Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496655

RESUMO

Human induced pluripotent stem cells (hiPSCs) derived into neurons offer a powerful in vitro model to study cellular processes. One method to characterize functional network properties of these cells is using multielectrode arrays (MEAs). MEAs can measure the electrophysiological activity of cellular cultures for extended periods of time without disruption. Here we used WTC11 hiPSCs with a doxycycline-inducible neurogenin 2 (NGN2) transgene differentiated into neurons co-cultured with primary human astrocytes. We achieved a synchrony index ~0.9 in as little as six-weeks with a mean firing rate of ~13 Hz. Previous reports show that derived 3D brain organoids can take several months to achieve similar strong network burst synchrony. We also used this co-culture to model aspects of sporadic Alzheimer's disease by mimicking blood-brain barrier breakdown using a human serum. Our fully human co-culture achieved strong network burst synchrony in a fraction of the time of previous reports, making it an excellent first pass, high-throughput method for studying network properties and neurodegenerative diseases.

2.
Physiol Behav ; 271: 114343, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37689380

RESUMO

Open-field activity is a commonly used measure of anxiety-related behavior in rodents. The inbred High and Low Activity strains of mice, selected for extreme differences in open-field activity, have been used as a genetic model of anxiety-related behaviors. These selected strains have been thoroughly studied through extensive behavioral testing, quantitative trait locus (QTL) mapping, whole-genome sequencing, and RNA sequencing, to uncover phenotypic and genotypic differences related to anxiety-related behavior. However, the effects of anxiolytic drugs on anxiety-related behavior in these strains have not been studied previously. This study allowed us to expand on previous findings to further characterize the anxiety-related behavior of these unique strains, using an anxiolytic drug. The goal of this study was to determine whether the treatment of adult male and female High Activity (low anxiety) and Low Activity (high anxiety) mice with diazepam, an agonist at the benzodiazepine allosteric site on the GABAA receptor and a drug commonly prescribed to treat anxiety disorders in humans, led to decreases in anxiety-like defensive behavioral responses as assessed in the open-field test (OFT) and elevated plus-maze (EPM). We tested the effects of three doses of diazepam (0, 0.5, 1.0, 3.0 mg/kg, i.p.), given 30 min before behavioral testing to one High Activity strain (H2) and two Low Activity strains (L1 and L2). There was an anxiolytic effect of diazepam observed in the High Activity strain, with more entries into the open arms of the elevated plus-maze, an effect similar to that seen in common mouse strains. However, the only anxiolytic effect of diazepam seen in the Low Activity strains was a reduction in stretch attend posture (SAP). Low Activity strains also displayed freezing behavior in both the OFT and EPM. The combination of the observed freezing behavior, that was not reduced by diazepam, and the reduction in SAP seen with diazepam, suggests a more complex phenotype that includes a component of innate fear in addition to anxiety-related risk assessment behaviors. Since fear and anxiety are distinguishable traits, and both contribute to human anxiety disorders, these results provide novel insight about interpretation of previous genetic and phenotypic differences observed between the High and Low Activity strains.

3.
Genes Brain Behav ; 22(6): e12851, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37259642

RESUMO

Anxiety disorders are common and can be debilitating, with effective treatments remaining hampered by an incomplete understanding of the underlying genetic etiology. Improvements have been made in understanding the genetic influences on mouse behavioral models of anxiety, yet it is unclear the extent to which genes identified in these experimental systems contribute to genetic variation in human anxiety phenotypes. Leveraging new and existing large-scale human genome-wide association studies, we tested whether sets of genes previously identified in mouse anxiety-like behavior studies contribute to a range of human anxiety disorders. When tested as individual genes, 13 mouse-identified genes were associated with human anxiety phenotypes, suggesting an overlap of individual genes contributing to both mouse models of anxiety-like behaviors and human anxiety traits. When genes were tested as sets, we did identify 14 significant associations between mouse gene sets and human anxiety, but the majority of gene sets showed no significant association with human anxiety phenotypes. These few significant associations indicate a need to identify and develop more translatable mouse models by identifying sets of genes that "match" between model systems and specific human phenotypes of interest. We suggest that continuing to develop improved behavioral paradigms and finer-scale experimental data, for instance from individual neuronal subtypes or cell-type-specific expression data, is likely to improve our understanding of the genetic etiology and underlying functional changes in anxiety disorders.


Assuntos
Transtornos de Ansiedade , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Animais , Transtornos de Ansiedade/genética , Ansiedade/genética , Fenótipo
4.
PLoS Genet ; 19(5): e1010693, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37216417

RESUMO

It remains unknown to what extent gene-gene interactions contribute to complex traits. Here, we introduce a new approach using predicted gene expression to perform exhaustive transcriptome-wide interaction studies (TWISs) for multiple traits across all pairs of genes expressed in several tissue types. Using imputed transcriptomes, we simultaneously reduce the computational challenge and improve interpretability and statistical power. We discover (in the UK Biobank) and replicate (in independent cohorts) several interaction associations, and find several hub genes with numerous interactions. We also demonstrate that TWIS can identify novel associated genes because genes with many or strong interactions have smaller single-locus model effect sizes. Finally, we develop a method to test gene set enrichment of TWIS associations (E-TWIS), finding numerous pathways and networks enriched in interaction associations. Epistasis is may be widespread, and our procedure represents a tractable framework for beginning to explore gene interactions and identify novel genomic targets.


Assuntos
Epistasia Genética , Transcriptoma , Transcriptoma/genética , Herança Multifatorial/genética , Redes Reguladoras de Genes/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla/métodos
5.
Cereb Cortex ; 33(10): 5808-5816, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36443249

RESUMO

Transactive response DNA binding protein 43 kilodaltons (TDP-43) is a DNA and RNA binding protein associated with severe neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), primarily affecting motor neurons in the brain and spinal cord. Partial knockdown of TDP-43 expression in a mouse model (the amiR-TDP-43 mice) leads to progressive, age-related motor dysfunction, as observed in ALS patients. Work in Caenorhabditis elegans suggests that TDP-43 dysfunction can lead to deficits in chromatin processing and double-stranded RNA (dsRNA) accumulation, potentially activating the innate immune system and promoting neuroinflammation. To test this hypothesis, we used immunostaining to investigate dsRNA accumulation and other signs of CNS pathology in the spinal cords of amiR-TDP-43 mice. Compared with wild-type controls, TDP-43 knockdown animals show increases in dsRNA deposition in the dorsal and ventral horns of the spinal cord. Additionally, animals with heavy dsRNA expression show markedly increased levels of astrogliosis and microgliosis. Interestingly, areas of high dsRNA expression and microgliosis overlap with regions of heavy neurodegeneration, indicating that activated microglia could contribute to the degeneration of spinal cord neurons. This study suggests that loss of TDP-43 function could contribute to neuropathology by increasing dsRNA deposition and subsequent innate immune system activation.


Assuntos
Esclerose Lateral Amiotrófica , Camundongos , Animais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Gliose/patologia , RNA de Cadeia Dupla/metabolismo , Medula Espinal/patologia , Neurônios Motores/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
6.
ACS Chem Neurosci ; 13(23): 3247-3256, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36410860

RESUMO

Acute activation of innate immune response in the brain, or neuroinflammation, protects this vital organ from a range of external pathogens and promotes healing after traumatic brain injury. However, chronic neuroinflammation leading to the activation of immune cells like microglia and astrocytes causes damage to the nervous tissue, and it is causally linked to a range of neurodegenerative diseases such as Alzheimer's diseases (AD), Multiple Sclerosis (MS), Parkinson's disease (PD), and many others. While neuroinflammation is a key target for a range of neuropathological diseases, there is a lack of effective countermeasures to tackle it, and existing experimental therapies require fairly invasive intracerebral and intrathecal delivery due to difficulty associated with the therapeutic crossover between the blood-brain barrier, making such treatments impractical to treat neuroinflammation long-term. Here, we present the development of an optimal neurotherapeutic using our Nanoligomer Discovery Engine, by screening downregulation of several proinflammatory cytokines (e.g., Interleukin-1ß or IL-1ß, tumor necrosis factor-alpha or TNF-α, TNF receptor 1 or TNFR1, Interleukin 6 or IL-6), inflammasomes (e.g., NLRP1), key transcription factors (e.g., nuclear factor kappa-B or NF-κß) and their combinations, as upstream regulators and canonical pathway targets, to identify and validate the best-in-class treatment. Using our high-throughput drug discovery, target validation, and lead molecule identification via a bioinformatics and artificial intelligence-based ranking method to design sequence-specific peptide molecules to up- or downregulate gene expression of the targeted gene at will, we used our discovery engine to perturb and identify most effective upstream regulators and canonical pathways for therapeutic intervention to reverse neuroinflammation. The lead neurotherapeutic was a combination of Nanoligomers targeted to NF-κß (SB.201.17D.8_NF-κß1) and TNFR1 (SB.201.18D.6_TNFR1), which were identified using in vitro cell-based screening in donor-derived human astrocytes and further validated in vivo using a mouse model of lipopolysaccharide (LPS)-induced neuroinflammation. The combination treatment SB_NI_111 was delivered without any special formulation using a simple intraperitoneal injection of low dose (5 mg/kg) and was found to significantly suppress the expression of LPS-induced neuroinflammation in mouse hippocampus. These results point to the broader applicability of this approach towards the development of therapies for chronic neuroinflammation-linked neurodegenerative diseases, sleep countermeasures, and others, and the potential for further investigation of the lead neurotherapeutic molecule as reversible gene therapy.


Assuntos
Inteligência Artificial , Doenças Neurodegenerativas , Humanos
7.
J Neurodev Disord ; 14(1): 33, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610565

RESUMO

BACKGROUND: Regulator of calcineurin 1 (RCAN1) is overexpressed in Down syndrome (DS), but RCAN1 levels are also increased in Alzheimer's disease (AD) and normal aging. AD is highly comorbid among individuals with DS and is characterized in part by progressive neurodegeneration that resembles accelerated aging. Importantly, abnormal RCAN1 levels have been demonstrated to promote memory deficits and pathophysiology that appear symptomatic of DS, AD, and aging. Anomalous diurnal rest-activity patterns and circadian rhythm disruptions are also common in DS, AD, and aging and have been implicated in facilitating age-related cognitive decline and AD progression. However, no prior studies have assessed whether RCAN1 dysregulation may also promote the age-associated alteration of rest-activity profiles and circadian rhythms, which could in turn contribute to neurodegeneration in DS, AD, and aging. METHODS: The present study examined the impacts of RCAN1 deficiency and overexpression on the photic entrainment, circadian periodicity, intensity and distribution, diurnal patterning, and circadian rhythmicity of wheel running in young (3-6 months old) and aged (9-14 months old) mice of both sexes. RESULTS: We found that daily RCAN1 levels in the hippocampus and suprachiasmatic nucleus (SCN) of light-entrained young mice are generally constant and that balanced RCAN1 expression is necessary for normal circadian locomotor activity rhythms. While the light-entrained diurnal period was unaltered, RCAN1-null and RCAN1-overexpressing mice displayed lengthened endogenous (free-running) circadian periods like mouse models of AD and aging. In light-entrained young mice, RCAN1 deficiency and overexpression also recapitulated the general hypoactivity, diurnal rest-wake pattern fragmentation, and attenuated amplitudes of circadian activity rhythms reported in DS, preclinical and clinical AD, healthily aging individuals, and rodent models thereof. Under constant darkness, RCAN1-null and RCAN1-overexpressing mice displayed altered locomotor behavior indicating circadian clock dysfunction. Using the Dp(16)1Yey/+ (Dp16) mouse model for DS, which expresses three copies of Rcan1, we found reduced wheel running activity and rhythmicity in both light-entrained and free-running young Dp16 mice like young RCAN1-overexpressing mice. Critically, these diurnal and circadian deficits were rescued in part or entirely by restoring Rcan1 to two copies in Dp16 mice. We also found that RCAN1 deficiency but not RCAN1 overexpression altered protein levels of the clock gene Bmal1 in the SCN. CONCLUSIONS: Collectively, this study's findings suggest that both loss and aberrant gain of RCAN1 precipitate anomalous light-entrained diurnal and circadian activity patterns emblematic of DS, AD, and possibly aging.


Assuntos
Envelhecimento , Doença de Alzheimer , Proteínas de Ligação ao Cálcio , Transtornos Cronobiológicos , Proteínas de Ligação a DNA , Síndrome de Down , Proteínas Musculares , Envelhecimento/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Transtornos Cronobiológicos/genética , Transtornos Cronobiológicos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Síndrome de Down/genética , Síndrome de Down/metabolismo , Feminino , Masculino , Camundongos , Atividade Motora/fisiologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Núcleo Supraquiasmático/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Am J Med Genet B Neuropsychiatr Genet ; 186(6): 353-366, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34569141

RESUMO

Genetic correlations suggest that the genetic relationship of alcohol use with internalizing psychopathology depends on the measure of alcohol use. Problematic alcohol use (PAU) is positively genetically correlated with internalizing psychopathology, whereas alcohol consumption ranges from not significantly correlated to moderately negatively correlated with internalizing psychopathology. To explore these different genetic relationships of internalizing psychopathology with alcohol use, we performed a multivariate genome-wide association study of four correlated factors (internalizing psychopathology, PAU, quantity of alcohol consumption, and frequency of alcohol consumption) and then assessed genome-wide and local genetic covariance between these factors. We identified 14 significant regions of local, largely positive, genetic covariance between PAU and internalizing psychopathology and 12 regions of significant local genetic covariance (including both positive and negative genetic covariance) between consumption factors and internalizing psychopathology. Partitioned genetic covariance among functional annotations suggested that brain tissues contribute significantly to positive genetic covariance between internalizing psychopathology and PAU but not to the genetic covariance between internalizing psychopathology and quantity or frequency of alcohol consumption. We hypothesize that genome-wide genetic correlations between alcohol use and psychiatric traits may not capture the more complex shared or divergent genetic architectures at the locus or tissue specific level. This study highlights the complexity of genetic architectures of alcohol use and internalizing psychopathology, and the differing shared genetics of internalizing disorders with PAU compared to consumption.


Assuntos
Alcoolismo , Estudo de Associação Genômica Ampla , Consumo de Bebidas Alcoólicas/genética , Alcoolismo/genética , Humanos , Psicopatologia
9.
Cereb Cortex Commun ; 2(2): tgab036, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34296180

RESUMO

Protein kinase B (PKB/AKT) is a central kinase involved in many neurobiological processes. AKT is expressed in the brain as three isoforms, AKT1, AKT2, and AKT3. Previous studies suggest isoform-specific roles in neural function, but very few studies have examined AKT isoform expression at the cellular level. In this study, we use a combination of histology, immunostaining, and genetics to characterize cell-type-specific expression of AKT isoforms in human and mouse brains. In mice, we find that AKT1 is the most broadly expressed isoform, with expression in excitatory neurons and the sole detectable AKT isoform in gamma-aminobutyric acid ergic interneurons and microglia. By contrast, we find that AKT2 is the sole isoform expressed in astroglia and is not detected in other neural cell types. We find that AKT3 is expressed in excitatory neurons with AKT1 but shows greater expression levels in dendritic compartments than AKT1. We extend our analysis to human brain tissues and find similar results. Using genetic deletion approaches, we also find that the cellular determinants restricting AKT isoform expression to specific cell types remain intact under Akt deficiency conditions. Because AKT signaling is linked to numerous neurological disorders, a greater understanding of cell-specific isoform expression could improve treatment strategies involving AKT.

10.
J Comp Neurol ; 529(11): 3112-3126, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33864263

RESUMO

Local translation can provide a rapid, spatially targeted supply of new proteins in distal dendrites to support synaptic changes that underlie learning. Learning and memory are especially sensitive to manipulations of translational control mechanisms, particularly those that target the initiation step, and translation initiation at synapses could be a means of maintaining synapse specificity during plasticity. Initiation predominantly occurs via recruitment of ribosomes to the 5' mRNA cap by complexes of eukaryotic initiation factors (eIFs), and the interaction between eIF4E and eIF4G1 is a particularly important target of translational control pathways. Pharmacological inhibition of eIF4E-eIF4G1 binding impairs formation of memory for aversive Pavlovian conditioning as well as the accompanying increase in polyribosomes in the heads of dendritic spines in the lateral amygdala (LA). This is consistent with a role for initiation at synapses in memory formation, but whether eIFs are even present near synapses is unknown. To determine whether dendritic spines contain eIFs and whether eIF distribution is affected by learning, we combined immunolabeling with serial section transmission electron microscopy (ssTEM) volume reconstructions of LA dendrites after Pavlovian conditioning. Labeling for eIF4E, eIF4G1, and eIF2α-another key target of regulation-occurred in roughly half of dendritic spines, but learning effects were only found for eIF4E, which was upregulated in the heads of dendritic spines. Our results support the possibility of regulated translation initiation as a means of synapse-specific protein targeting during learning and are consistent with the model of eIF4E availability as a central point of control.


Assuntos
Espinhas Dendríticas/metabolismo , Fator de Iniciação 4E em Eucariotos/biossíntese , Memória/fisiologia , Biossíntese de Proteínas/fisiologia , Regulação para Cima/fisiologia , Animais , Espinhas Dendríticas/ultraestrutura , Fator de Iniciação 4E em Eucariotos/genética , Fatores de Iniciação em Eucariotos/biossíntese , Fatores de Iniciação em Eucariotos/genética , Masculino , Ratos , Ratos Sprague-Dawley
11.
Elife ; 92020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33325370

RESUMO

AKT is implicated in neurological disorders. AKT has three isoforms, AKT1/AKT2/AKT3, with brain cell type-specific expression that may differentially influence behavior. Therefore, we examined single Akt isoform, conditional brain-specific Akt1, and double Akt1/3 mutant mice in behaviors relevant to neuropsychiatric disorders. Because sex is a determinant of these disorders but poorly understood, sex was an experimental variable in our design. Our studies revealed AKT isoform- and sex-specific effects on anxiety, spatial and contextual memory, and fear extinction. In Akt1 mutant males, viral-mediated AKT1 restoration in the prefrontal cortex rescued extinction phenotypes. We identified a novel role for AKT2 and overlapping roles for AKT1 and AKT3 in long-term memory. Finally, we found that sex-specific behavior effects were not mediated by AKT expression or activation differences between sexes. These results highlight sex as a biological variable and isoform- or cell type-specific AKT signaling as potential targets for improving treatment of neuropsychiatric disorders.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/metabolismo , Extinção Psicológica/fisiologia , Transtornos Mentais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Memória Espacial/fisiologia , Animais , Feminino , Masculino , Memória de Longo Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Isoformas de Proteínas , Caracteres Sexuais , Comportamento Espacial/fisiologia
12.
Nicotine Tob Res ; 22(8): 1310-1315, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31930296

RESUMO

INTRODUCTION: Smoking is a leading cause of death, and genetic variation contributes to smoking behaviors. Identifying genes and sets of genes that contribute to risk for addiction is necessary to prioritize targets for functional characterization and for personalized medicine. METHODS: We performed a gene set-based association and heritable enrichment study of two addiction-related gene sets, those on the Smokescreen Genotyping Array and the nicotinic acetylcholine receptors, using the largest available GWAS summary statistics. We assessed smoking initiation, cigarettes per day, smoking cessation, and age of smoking initiation. RESULTS: Individual genes within each gene set were significantly associated with smoking behaviors. Both sets of genes were significantly associated with cigarettes per day, smoking initiation, and smoking cessation. Age of initiation was only associated with the Smokescreen gene set. Although both sets of genes were enriched for trait heritability, each accounts for only a small proportion of the single nucleotide polymorphism-based heritability (2%-12%). CONCLUSIONS: These two gene sets are associated with smoking behaviors, but collectively account for a limited amount of the genetic and phenotypic variation of these complex traits, consistent with high polygenicity. IMPLICATIONS: We evaluated evidence for the association and heritable contribution of expert-curated and bioinformatically identified sets of genes related to smoking. Although they impact smoking behaviors, these specifically targeted genes do not account for much of the heritability in smoking and will be of limited use for predictive purposes. Advanced genome-wide approaches and integration of other 'omics data will be needed to fully account for the genetic variation in smoking phenotypes.


Assuntos
Comportamento Aditivo/genética , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Receptores Nicotínicos/genética , Fumar/genética , Idade de Início , Comportamento Aditivo/epidemiologia , Comportamento Aditivo/psicologia , Colorado/epidemiologia , Humanos , Fenótipo , Fumar/epidemiologia , Fumar/psicologia
13.
Exp Neurol ; 299(Pt A): 228-240, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28455196

RESUMO

Although autism spectrum disorder (ASD) has a strong genetic basis, its etiology is complex, with several genetic factors likely to be involved as well as environmental factors. Immune dysregulation has gained significant attention as a causal mechanism in ASD pathogenesis. ASD has been associated with immune abnormalities in the brain and periphery, including inflammatory disorders and autoimmunity in not only the affected individuals but also their mothers. Prenatal exposure to maternal immune activation (MIA) has been implicated as an environmental risk factor for ASD. In support of this notion, animal models have shown that MIA results in offspring with behavioral, neurological, and immunological abnormalities similar to those observed in ASD. This raises the question of how MIA exposure can lead to ASD in susceptible individuals. Recent evidence points to a potential inflammation pathway linking MIA-associated ASD with the activity of T helper 17 (Th17) lymphocytes and their effector cytokine interleukin-17A (IL-17A). IL-17A has been implicated from human studies and elevated IL-17A levels in the blood have been found to correlate with phenotypic severity in a subset of ASD individuals. In MIA model mice, elevated IL-17A levels also have been observed. Additionally, antibody blockade to inhibit IL-17A signaling was found to prevent ASD-like behaviors in offspring exposed to MIA. Therefore, IL-17A dysregulation may play a causal role in the development of ASD. The source of increased IL-17A in the MIA mouse model was attributed to maternal Th17 cells because genetic removal of the transcription factor RORγt to selectively inhibit Th17 differentiation in pregnant mice was able to prevent ASD-like behaviors in the offspring. Similar to ASD individuals, the MIA-exposed offspring also displayed cortical dysplasia which could be prevented by inhibition of IL-17A signaling in pregnant mice. This finding reveals one possible cellular mechanism through which ASD-related cognitive and behavioral deficits may emerge following maternal inflammation. IL-17A can exert strong effects on cell survival and differentiation and the activity of signal transduction cascades, which can have important consequences during cortical development on neural function. This review examines IL-17A signaling pathways in the context of both immunity and neural function that may contribute to the development of ASD associated with MIA.


Assuntos
Transtorno do Espectro Autista/genética , Interleucina-17/genética , Adulto , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Feminino , Humanos , Recém-Nascido , Camundongos , Gravidez
14.
Elife ; 62017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29173281

RESUMO

AKT is a kinase regulating numerous cellular processes in the brain, and mutations in AKT are known to affect brain function. AKT is indirectly implicated in synaptic plasticity, but its direct role has not been studied. Moreover, three highly related AKT isoforms are expressed in the brain, but their individual roles are poorly understood. We find in Mus musculus, each AKT isoform has a unique expression pattern in the hippocampus, with AKT1 and AKT3 primarily in neurons but displaying local differences, while AKT2 is in astrocytes. We also find isoform-specific roles for AKT in multiple paradigms of hippocampal synaptic plasticity in area CA1. AKT1, but not AKT2 or AKT3, is required for L-LTP through regulating activity-induced protein synthesis. Interestingly, AKT activity inhibits mGluR-LTD, with overlapping functions for AKT1 and AKT3. In summary, our studies identify distinct expression patterns and roles in synaptic plasticity for AKT isoforms in the hippocampus.


Assuntos
Expressão Gênica , Hipocampo/fisiologia , Potenciação de Longa Duração , Plasticidade Neuronal , Proteínas Proto-Oncogênicas c-akt/biossíntese , Animais , Astrócitos/enzimologia , Astrócitos/fisiologia , Perfilação da Expressão Gênica , Hipocampo/enzimologia , Camundongos , Neurônios/enzimologia , Neurônios/fisiologia , Isoformas de Proteínas/biossíntese
15.
Nat Med ; 23(3): 347-354, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28112735

RESUMO

The prefrontal cortex (PFC) underlies higher cognitive processes that are modulated by nicotinic acetylcholine receptor (nAChR) activation by cholinergic inputs. PFC spontaneous default activity is altered in neuropsychiatric disorders, including schizophrenia-a disorder that can be accompanied by heavy smoking. Recently, genome-wide association studies (GWAS) identified single-nucleotide polymorphisms (SNPs) in the human CHRNA5 gene, encoding the α5 nAChR subunit, that increase the risks for both smoking and schizophrenia. Mice with altered nAChR gene function exhibit PFC-dependent behavioral deficits, but it is unknown how the corresponding human polymorphisms alter the cellular and circuit mechanisms underlying behavior. Here we show that mice expressing a human α5 SNP exhibit neurocognitive behavioral deficits in social interaction and sensorimotor gating tasks. Two-photon calcium imaging in awake mouse models showed that nicotine can differentially influence PFC pyramidal cell activity by nAChR modulation of layer II/III hierarchical inhibitory circuits. In α5-SNP-expressing and α5-knockout mice, lower activity of vasoactive intestinal polypeptide (VIP) interneurons resulted in an increased somatostatin (SOM) interneuron inhibitory drive over layer II/III pyramidal neurons. The decreased activity observed in α5-SNP-expressing mice resembles the hypofrontality observed in patients with psychiatric disorders, including schizophrenia and addiction. Chronic nicotine administration reversed this hypofrontality, suggesting that administration of nicotine may represent a therapeutic strategy for the treatment of schizophrenia, and a physiological basis for the tendency of patients with schizophrenia to self-medicate by smoking.


Assuntos
Comportamento Animal/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Comportamento Social , Animais , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Imunofluorescência , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único , Córtex Pré-Frontal/fisiopatologia , Inibição Pré-Pulso/efeitos dos fármacos , Receptores Adrenérgicos beta 2/genética , Receptores Nicotínicos/genética , Reflexo de Sobressalto/efeitos dos fármacos , Esquizofrenia/genética , Tabagismo/genética , Receptor Nicotínico de Acetilcolina alfa7/genética
16.
J Neurosci ; 37(7): 1862-1872, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087764

RESUMO

Translation in dendrites is believed to support synaptic changes during memory consolidation. Although translational control mechanisms are fundamental mediators of memory, little is known about their role in local translation. We previously found that polyribosomes accumulate in dendritic spines of the adult rat lateral amygdala (LA) during consolidation of aversive pavlovian conditioning and that this memory requires cap-dependent initiation, a primary point of translational control in eukaryotic cells. Here we used serial electron microscopy reconstructions to quantify polyribosomes in LA dendrites when consolidation was blocked by the cap-dependent initiation inhibitor 4EGI-1. We found that 4EGI-1 depleted polyribosomes in dendritic shafts and selectively prevented their upregulation in spine heads, but not bases and necks, during consolidation. Cap-independent upregulation was specific to spines with small, astrocyte-associated synapses. Our results reveal that cap-dependent initiation is involved in local translation during learning and that local translational control varies with synapse type.SIGNIFICANCE STATEMENT Translation initiation is a central regulator of long-term memory formation. Local translation in dendrites supports memory by providing necessary proteins at synaptic sites, but it is unknown whether this requires initiation or bypasses it. We used serial electron microscopy reconstructions to examine polyribosomes in dendrites when memory formation was blocked by an inhibitor of translation initiation. This revealed two major pools of polyribosomes that were upregulated during memory formation: one pool in dendritic spine heads that was initiation dependent and another pool in the bases and necks of small spines that was initiation independent. Thus, translation regulation differs between spine types and locations, and translation that occurs closest to individual synapses during memory formation is initiation dependent.


Assuntos
Complexo Nuclear Basolateral da Amígdala/citologia , Espinhas Dendríticas/metabolismo , Regulação da Expressão Gênica/fisiologia , Consolidação da Memória/fisiologia , Neurônios/ultraestrutura , Biossíntese de Proteínas/fisiologia , Análise de Variância , Animais , Aprendizagem por Associação/efeitos dos fármacos , Aprendizagem por Associação/fisiologia , Complexo Nuclear Basolateral da Amígdala/diagnóstico por imagem , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hidrazonas/farmacologia , Processamento de Imagem Assistida por Computador , Masculino , Consolidação da Memória/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Modelos Animais , Neuroimagem , Neurônios/efeitos dos fármacos , Polirribossomos/efeitos dos fármacos , Polirribossomos/ultraestrutura , Biossíntese de Proteínas/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/ultraestrutura , Tiazóis/farmacologia
17.
Mol Neurodegener ; 11(1): 62, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27578006

RESUMO

BACKGROUND: A few tau immunotherapies are now in clinical trials with several more likely to be initiated in the near future. A priori, it can be anticipated that an antibody which broadly recognizes various pathological tau aggregates with high affinity would have the ideal therapeutic properties. Tau antibodies 4E6 and 6B2, raised against the same epitope region but of varying specificity and affinity, were tested for acutely improving cognition and reducing tau pathology in transgenic tauopathy mice and neuronal cultures. RESULTS: Surprisingly, we here show that one antibody, 4E6, which has low affinity for most forms of tau acutely improved cognition and reduced soluble phospho-tau, whereas another antibody, 6B2, which has high affinity for various tau species was ineffective. Concurrently, we confirmed and clarified these efficacy differences in an ex vivo model of tauopathy. Alzheimer's paired helical filaments (PHF) were toxic to the neurons and increased tau levels in remaining neurons. Both toxicity and tau seeding were prevented by 4E6 but not by 6B2. Furthermore, 4E6 reduced PHF spreading between neurons. Interestingly, 4E6's efficacy relates to its high affinity binding to solubilized PHF, whereas the ineffective 6B2 binds mainly to aggregated PHF. Blocking 4E6's uptake into neurons prevented its protective effects if the antibody was administered after PHF had been internalized. When 4E6 and PHF were administered at the same time, the antibody was protective extracellularly. CONCLUSIONS: Overall, these findings indicate that high antibody affinity for solubilized PHF predicts efficacy, and that acute antibody-mediated improvement in cognition relates to clearance of soluble phospho-tau. Importantly, both intra- and extracellular clearance pathways are in play. Together, these results have major implications for understanding the pathogenesis of tauopathies and for development of immunotherapies.


Assuntos
Anticorpos/imunologia , Emaranhados Neurofibrilares/metabolismo , Neurônios/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Animais , Anticorpos/uso terapêutico , Humanos , Camundongos , Fosforilação , Tauopatias/patologia , Proteínas tau/imunologia
18.
Science ; 351(6276): 933-9, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26822608

RESUMO

Viral infection during pregnancy has been correlated with increased frequency of autism spectrum disorder (ASD) in offspring. This observation has been modeled in rodents subjected to maternal immune activation (MIA). The immune cell populations critical in the MIA model have not been identified. Using both genetic mutants and blocking antibodies in mice, we show that retinoic acid receptor-related orphan nuclear receptor gamma t (RORγt)-dependent effector T lymphocytes [for example, T helper 17 (TH17) cells] and the effector cytokine interleukin-17a (IL-17a) are required in mothers for MIA-induced behavioral abnormalities in offspring. We find that MIA induces an abnormal cortical phenotype, which is also dependent on maternal IL-17a, in the fetal brain. Our data suggest that therapeutic targeting of TH17 cells in susceptible pregnant mothers may reduce the likelihood of bearing children with inflammation-induced ASD-like phenotypes.


Assuntos
Transtorno do Espectro Autista/imunologia , Córtex Cerebral/anormalidades , Córtex Cerebral/imunologia , Interleucina-17/imunologia , Troca Materno-Fetal/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Células Th17/imunologia , Animais , Anticorpos Bloqueadores/imunologia , Anticorpos Bloqueadores/uso terapêutico , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/prevenção & controle , Comportamento Animal , Sintomas Comportamentais/imunologia , Córtex Cerebral/efeitos dos fármacos , Feminino , Interleucina-17/biossíntese , Interleucina-17/farmacologia , Masculino , Camundongos , Mutação , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Fenótipo , Gravidez , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/imunologia , Transdução de Sinais , Células Th17/efeitos dos fármacos
19.
Acta Neuropathol ; 130(6): 829-43, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26497675

RESUMO

Aging is the largest risk factor for Alzheimer's disease (AD). Patients with Down syndrome (DS) develop symptoms consistent with early-onset AD, suggesting that overexpression of chromosome 21 genes such as Regulator of Calcineurin 1 (RCAN1) plays a role in AD pathogenesis. RCAN1 levels are increased in the brain of DS and AD patients but also in the human brain with normal aging. RCAN1 has been implicated in several neuronal functions, but whether its increased expression is correlative or causal in the aging-related progression of AD remains elusive. We show that brain-specific overexpression of the human RCAN1.1S isoform in mice promotes early age-dependent memory and synaptic plasticity deficits, tau pathology, and dysregulation of dynamin-related protein 1 (DRP1) activity associated with mitochondrial dysfunction and oxidative stress, reproducing key AD features. Based on these findings, we propose that chronic RCAN1 overexpression during aging alters DRP1-mediated mitochondrial fission and thus acts to promote AD-related progressive neurodegeneration.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Proteínas Musculares/metabolismo , Degeneração Neural/fisiopatologia , Envelhecimento/patologia , Envelhecimento/psicologia , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Estudos de Coortes , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Síndrome de Down/patologia , Síndrome de Down/fisiopatologia , Dinaminas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Potenciação de Longa Duração/fisiologia , Masculino , Transtornos da Memória/patologia , Transtornos da Memória/fisiopatologia , Camundongos Transgênicos , Mitocôndrias/patologia , Proteínas Musculares/genética , Degeneração Neural/patologia , Estresse Oxidativo/fisiologia , Proteínas tau/metabolismo
20.
Learn Mem ; 21(5): 298-304, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24741110

RESUMO

The proper regulation of translation is required for the expression of long-lasting synaptic plasticity. A major site of translational control involves the phosphorylation of eukaryotic initiation factor 2 α (eIF2α) by PKR-like endoplasmic reticulum (ER) kinase (PERK). To determine the role of PERK in hippocampal synaptic plasticity, we used the Cre-lox expression system to selectively disrupt PERK expression in the adult mouse forebrain. Here, we demonstrate that in hippocampal area CA1, metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD) is associated with increased eIF2α phosphorylation, whereas stimulation of early- and late-phase long-term potentiation (E-LTP and L-LTP, respectively) is associated with decreased eIF2α phosphorylation. Interesting, although PERK-deficient mice exhibit exaggerated mGluR-LTD, both E-LTP and L-LTP remained intact. We also found that mGluR-LTD is associated with a PERK-dependent increase in eIF2α phosphorylation. Our findings are consistent with the notion that eIF2α phosphorylation is a key site for the bidirectional control of persistent forms of synaptic LTP and LTD and suggest a distinct role for PERK in mGluR-LTD.


Assuntos
Região CA1 Hipocampal/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , eIF-2 Quinase/metabolismo , Análise de Variância , Animais , Fenômenos Biofísicos/efeitos dos fármacos , Fenômenos Biofísicos/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteínas de Ligação a DNA/metabolismo , Estimulação Elétrica , Técnicas In Vitro , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Fatores de Transcrição/metabolismo , eIF-2 Quinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...